Poly(p-phenylene terephthalamide) Film as a Matrix Film for Electrochromic V₂O₅ and the Improvement of the ECD Properties

Jun Yano, Tomoyuki Hirayama¹, Sumio Yamasaki¹ and Suzuko Yamazaki²

Department of Engineering, University of East Asia, Ichinomiyagakuencho 2-1, Shimonoseki, Yamaguchi 751-8503, Japan

¹Faculty of Engineering, Kyushu Sangyo University, Matsukadai 2-3-1, Higashi-Ku, Fukuoka 813-8503, Japan

²Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi, Yamaguchi 753-8512, Japan

Among inorganic ECD materials, vanadium pentoxide (V_2O_5) films have attracted attention for use in multicolored ECDs [1]. The V_2O_5 films readily deteriorate and exhibit no electrochromism when they are subject to over-oxidation or over-reduction. Moreover, without the over-oxidation or over-reduction, the films peel off the electrode substrates after about 1500 color change cycles [2]. To enhance the durability, we have used an aramid resin, poly (p-phenylene terephtalamide) (PPTA), as a matrix film and prepared the PPTA- V_2O_5 composite film.

The PPTA film was obtained on an indium-tin oxide (ITO) [3]. On the ITO electrode and the PPTA film-coated ITO electrode, V_2O_5 was electrodeposited from aqueous electrolyte solution containing $VOSO_4$ until the passed charge reached $2.0\,\mathrm{C}$ cm 2 . The cyclic voltammograms of the obtained the V_2O_5 and $PPTA-V_2O_5$ composite films were measured, and both voltammograms were almost the same shape. Significantly, however, the absorption spectra were different from each other (Figs. 1 and 2). The absorbance ranging from 600 to 900 nm changes more remarkably in the $PPTA-V_2O_5$ film than in the V_2O_5 film. The $PPTA-V_2O_5$ film exhibits higher contrast ratio.

In the reduced state of the PPTA-V₂O₅ film (Fig. 2 (a)), the absorbance peak is evident at about 800 nm, and the film becomes green. On the other hand, the V₂O₅ film is bluish green at -0.6 V. The XPS signal peak of V(2p) of the PPTA-V₂O₅ film was 1.5 eV lower than that of the V₂O₅ film, implying that the lower valency of vanadium, V (III) as well as V(IV), exists in the PPTA-V₂O₅ film. The PPTA-V₂O₅ film showed no blue color due to the relatively small amount of V(V), compared with V (III) and V(IV). This is probably due to the simultaneous presence of carbonyl and amino groups on the polymeric backbone whose lone pair electrons are available to coordinate with V(V). In addition, the electronic coordination of PPTA prevented V₂O₅ from degrading and from peeling off the electrode substrate during the repetitive color changes under anodic and cathodic polarizations. No color change took place after 200 repetitions for the V₂O₅ film, while a color change was obtained even after 5000 repetition for the PPTA-V₂O₅ film.

We are grateful to the Electric Technology Research Foundation of Chugoku for financial support of this work.

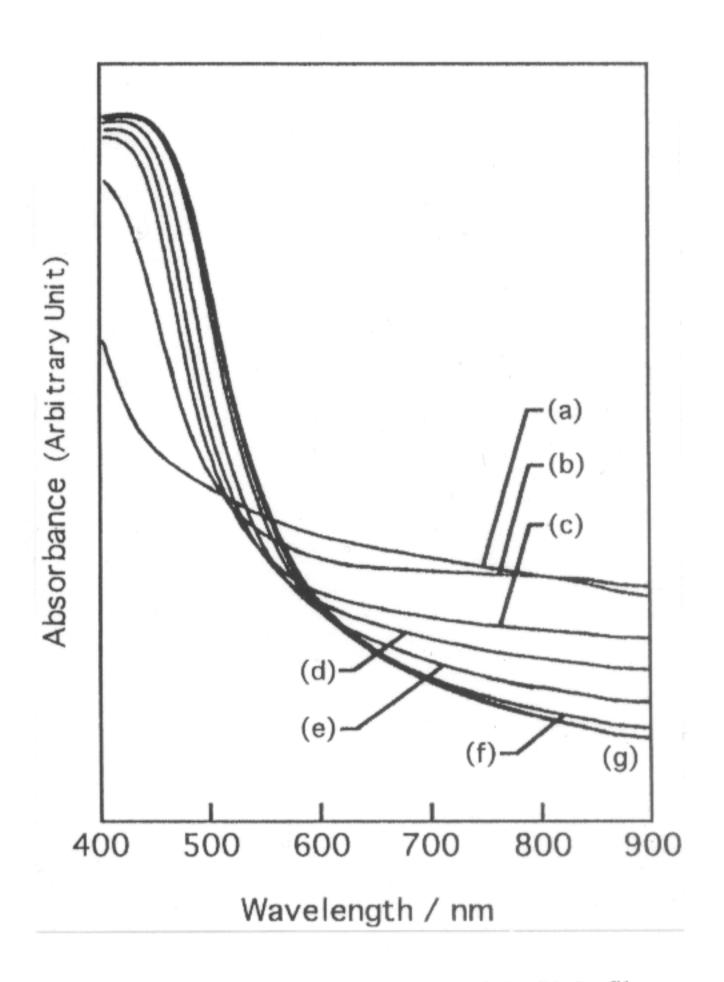


Fig. 1 Optical absorption spectrum of the V_2O_5 film in situ at various electrode potentials: (a) -0.6; (b) -0.4; (c) -0.2; (d) 0; (e) +0.2; (f) +0.4; (g) +0.8V vs. Ag $^{\dagger}/Ag$.

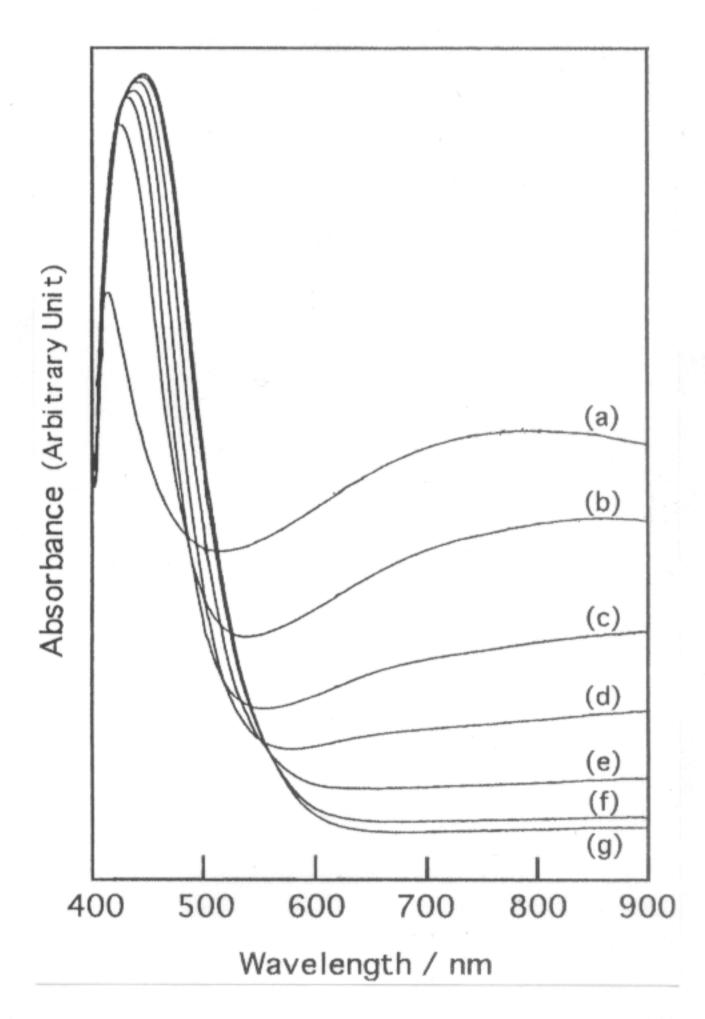


Fig. 2 Optical absorption spectrum of the PPTA- V_2O_5 film *in situ* at various electrode potentials: (a) -0.6; (b) -0.4; (c) -0.2; (d) 0; (e) +0.2; (f) +0.4; (g) +0.8V $_{VS}$. Ag $^+$ /Ag.

^[1] C. G. Granqvist, Handbook of Inorganic Electrochromic Materials, Elsevier, Amsterdam, 1995.

^[2] S. Yamasaki et al., Hyomen Gijutu, 49 (1998) 990.

^[3] K. Koga et al., Polym. J. 21 (1989) 733.